
Processing

DAVID SIMON

PROGRAMMING
BASICS

FACE DETECTION
On the first day of our Programming Introduction with Processing I used
OpenCV1 to explore the basics of face recognition.
Combining a small algorithm for pixelation with the face recognition data,
I created a proof-of-concept application which demonstrates obscuring
faces in real-time.

An extension to this sample could be made with a differentiation
of different faces, i.e. tracking the face of a single person only. Or a
extrapolation of a face’s position in case of interrupted tracking.

01

[1] Open Source Computer Vision - http://opencv.org/

FA
C

E
DE

TE
CT

IO
N

01

DRAWING
We were given the task to write a simple drawing application, which
should grant the ability to draw in the color of choice. I created a simple
Implementation, using a “Line” class. For the GUI I made use of the
library ControlP51. With a rightclick+drag one can delete lines.

02

[1] ControlP5 - http://www.sojamo.de/libraries/controlP5/

DR
AW

IN
G

02

SOUND FROM
MOVEMENT
I experimented with sound generation from movement using the
accelerometer of my IPhone. To send the signal I used the app OSCmote1.
Alternatively you could use GyrOSC2 To receive to OSC protocol messages
the library oscP53 was used.

The input was used to modulate a synthesizer’s frequency and gain via the
x- and z-axis respectively. The tone was generated with Minim4.

03

[1] OSCMOTE - http://pixelverse.org/iphone/oscemote/
[2] GyrOSC - http://www.bitshapesoftware.com/instruments/gyrosc/
[3] oscP5 - http://www.sojamo.de/libraries/oscP5/
[4] Minim - http://code.compartmental.net/tools/minim/

SO
UN

D
FR

O
M

 M
O

VE
M

EN
T

03

TREE SIMULATION
To create a forest, was the given assignment. The result is a real-time
simulation application of a modeled tree population with it’s own “DNA”.

Trees are represented by circles, small at first, increasing in size as they
grow older and finally stagnating. The color of a tree is an expression of their
attribute “Resilience”. The more resilient a tree becomes the yellower it is.

The reproduction cycle inside the virutal environment is a reduced modeled
process in which trees send out pollen, which in turn can fertilize trees
they hit. If such a fertilization succeeds a tree will then proceed to spread
it’s seeds which contains a newly created “genome”. This new genome is a
result of the mixture of the tree’s own genome and the one from the pollen
that fertilized the tree. There is no concept of genders represented.
Seeds have a chance to germinate and will proceed to do so only if they are
not within the range of another tree (read: “underneath it”). All sprouted
trees have a variable chance to die, which increases almost linearly with age
and then dramatically increases as a tree’s age nears 200 years.

The program allows the user to take influence on the environment. The
range of tolerance for resilience can be regulated. This allows to simulate
evolutionary pressure by slowly increasing the minimum requirement for
“Resilience”. One can spread seeds with the mouse by pressing “S” and
thereby start an inital population.

The program could be extended in many directions. The implemtentation of
DNA is not limited. Therefore further genes or even sets of genes could be
implemented with minimal effort. Easily one could introduce new attributes.

Trees, seeds and pollen are all extensions to the DNA class. The application
does not distinguish between different “types”, e.g. race or species in the
DNA. This is intented since differentiation and compatibility should be
expressed through the DNA itselff.

Graphical representation is currently seperated from the DNA. Mutating
“form” and perhaps even mutating functionality could be further extensions.
A first attemp on this was made trying to involve L-Systems growing in depth
with age. Graphical performance was the initial limitation in this approach.

04

TR
EE

 S
IM

UL
AT

IO
N

04

L-SYSTEMS
When we moved to recursion, I was hinted at the very interesting topic of
Lindenmayer systems.

“An L-system consists of an alphabet of symbols that can be used to
make strings, a collection of production rules that expand each symbol
into some larger string of symbols, an initial “axiom” string from which
to begin construction, and a mechanism for translating the generated
strings into geometric structures. L-systems were introduced and
developed in 1968 by Aristid Lindenmayer, a Hungarian theoretical
biologist and botanist at the University of Utrecht. Lindenmayer used
L-systems to describe the behaviour of plant cells and to model the
growth processes of plant development. L-systems have also been used
to model the morphology of a variety of organisms and can be used to
generate self-similar fractals such as iterated function systems.”1

I was looking at several implementations in both pure Java and Processing
as well, but none quite seemed to meet my requirements, so I went
ahead rewrote the generation algorithm inspired by a very generic
implementation2 and then used parts of another3 - though only selectively,
since it’s source code is written very poorly - to implement the graphical
representation.
What I found especially intriguing about this second implementation3 was
the use of the HSB color mode to visualize to depth of a generated system.

I then proceeded to add GUI elements which linked to certain parameters
to give the user control over the representation of a rule or “tree”.
Configurable are depth and angle. Additionally the user can chose between
a set of premade rules using the keys 1-9.

The result is generator for three dimensional L-Systems, which allows for
exploration & play with this recursive concept.

05

[1] L-System - https://en.wikipedia.org/wiki/L-system
[1] http://www.javaview.de/vgp/tutor/lsystem/LSystem.java
[3] http://web.mit.edu/~eric_r/Public/lsystems/lsys3D12.pde

L-
SY

ST
EM

S
05

QUADRA PONG
Our final task was to adjust, extend and modify a given example of a simple
breakout game1. I quickly realized what limitations the provided code
sample introduced and that my idea of a game was hardly doable with it.
The decision was made to write “Quadra Pong” from scratch. For collision
detection I reused the line intersection method from the original game.

The result is an easily extensible four player Pong game. Each player
occupies a side of the playing area. In the normal mode two balls spawn
and players have to defend their respective side and get the balls into the
areas of the other players to score.

Since four players are not always at hand, I implemented AI Players which
can be enabled or disabled within the controlConfig. For demonstration
purposes all four AI players can be enabled and observed. A certain
imperfection was neccessary for them to be fun to play against.

The aesthetics of the game were kept very reduced as a reference to the
original Pong game.

As an alternative option to play is using a Smartphone with an App for
submitting OSC signals or similar device capable of TUIO. This allows for a
player or multiple players to steer their plattform using touch controls.

The final goal would have been an integration of kinect controls. A top-down
beamer and kinect camera could provide a playeable area on a table for
example. Players could then control their plattform by simply hovering a
hand over the projected image or closely next to it.

Interesting extenions could involve more than four players, or even teams
and different approaches to controlling a players plattform.

06

[1] Breakout - http://blogs.iad.zhdk.ch/codingspace/endaufgabe/

CONCLUSION
During the two weeks of the introductory course into programming I was able
to explore new fields and experiment with interesting concepts, ideas and
technologies.

Already knowing C# and Unity, I made my way into Java and Processing
quite easily. I found it fascinating and motivating to dive into different aspects
everyday and then bringing the expierence together in one final project.

All code samples mentioned can be found on
http://blogs.iad.zhdk.ch/codingspace/author/davidsimon/

David Simon

